您选择的条件: Qing Zhao
  • Single-pixel imaging of a translational object

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Image-free tracking methods based on single-pixel detectors (SPDs) can track a moving object at a very high frame rate, but they rarely can achieve simultaneous imaging of such an object. In this study, we propose a method for simultaneously obtaining the relative displacements and images of a translational object. Four binary Fourier patterns and two differential Hadamard patterns are used to modulate one frame of the object and then modulated light signals are obtained by SPD. The relative displacements and image of the moving object can be gradually obtained along with the detection. The proposed method does not require any prior knowledge of the object and its motion. The method has been verified by simulations and experiments, achieving a frame rate of 3332 Hz to acquire relative displacements of a translational object at a spatial resolution of $128 \times 128$ pixels using a 20000-Hz digital micro-mirror device. This proposed method can broaden the application of image-free tracking methods and obtain spatial information about moving objects.

  • A detail-enhanced sampling strategy in Hadamard single-pixel imaging

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Hadamard single-pixel imaging (HSI) is an appealing imaging technique due to its features of low hardware complexity and industrial cost. To improve imaging efficiency, many studies have focused on sorting Hadamard patterns to obtain reliable reconstructed images with very few samples. In this study, we present an efficient HSI imaging method that employs an exponential probability function to sample Hadamard spectra along a direction with better energy concentration for obtaining Hadamard patterns. We also propose an XY order to further optimize the pattern-selection method with extremely fast Hadamard order generation while retaining the original performance. We used the compressed sensing algorithm for image reconstruction. The simulation and experimental results show that these pattern-selection method reliably reconstructs objects and preserves the edge and details of images.

  • Mid-wave infrared super-resolution imaging based on compressive calibration and sampling

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Mid-wave infrared (MWIR) cameras for large number pixels are extremely expensive compared with their counterparts in visible light, thus, super-resolution imaging (SRI) for MWIR by increasing imaging pixels has always been a research hotspot in recent years. Over the last decade, with the extensively investigation of the compressed sensing (CS) method, focal plane array (FPA) based compressive imaging in MWIR developed rapidly for SRI. This paper presents a long-distance super-resolution FPA compressive imaging in MWIR with improved calibration method and imaging effect. By the use of CS, we measure and calculate the calibration matrix of optical system efficiently and precisely, which improves the imaging contrast and signal-to-noise ratio(SNR) compared with previous work. We also achieved the 4x4 times super-resolution reconstruction of the long-distance objects which reaches the limit of the system design in our experiment.

  • Towards simultaneous coherent radiation in the visible and microwave bands with doped molecular crystals

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Coherent sources exploiting the stimulated emission of non-equilibrium quantum systems, i.e. gain media, have proven indispensable for advancing fundamental research and engineering. The operating electromagnetic bands of such coherent sources have been continuously enriched for increasing demands.Nevertheless, for a single bench top coherent source, simultaneous generation of radiation in multiple bands, especially when the bands are widely separated, present formidable challenges with a single gain medium. Here, we propose a mechanism of simultaneously realizing the stimulated emission of radiation in the visible and microwave bands, i.e. lasing and masing actions, at ambient conditions by utilizing photoexcited singlet and triplet states of the pentacene molecules that are doped in p-terphenyl. The possibility is validated by the observed amplified spontaneous emission (ASE) at 645 nm with a narrow linewidth around 1 nm from the pentacene-doped p-terphenyl crystal used for masing at 1.45 GHz and consolidated by a 20 fold lower threshold of ASE compared to the reported masing threshold. The overall threshold of the pentacene-based multiband coherent source can be optimized by appropriate alignment of the pump-light polarization with the pentacene's transition dipole moment. Our work not only shows a great promise on immediate realization of multiband coherent sources but also establishes an intriguing solid-state platform for fundamental research of quantum optics in multiple frequency domains.

  • Far-field diffraction computational imaging based on parameter-robust illumination and direct phase optimization

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Coherent diffraction imaging (CDI) is a promising imaging technique revealing most of the information from diffraction measurements. An ideal CDI should reconstruct complex-valued object from a single-shot far-field diffraction without any priori information about the target. To realize the ideal CDI, we propose a class of parameter-robust illumination pattern. A direct phase optimizing algorithm is also raised here to improve the performance of phase retrieval in strong noise. Experimental result demonstrates the efficiency of our scheme in practical noisy measurement for complex-valued target.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心